Confusion, Shocks and the WHIM: Cosmological AMR simulations of upcoming SZ surveys

Brian O'Shea
Los Alamos National Lab
& Michigan State University

With:

Eric Hallman, Jack Burns Michael Norman, Robert Harkness, Rick Wagner (UCSD)

Constraints from clusters

Borgani, 2003

Current & Upcoming SZE surveys

CHARACTERISTICS OF UPCOMING SZE SURVEYS

Survey	Angular Coverage	Beam Size (~144 GHz) (arcmin)	rms Sensitivity per beam (μ K)
APEX-SZ	TBD 4000 deg ² 100 deg ² All-sky	1.0 1.0 1.7 7.1	10 10 2 6.0

Rvir ~ several arcmin @ z ~ 0.5

Integrated cluster observables better measure of mass

Why hydrodynamical simulations?

- N-body only sims make many assumptions (clusters spherical, in hydrostatic equilibrium, "neat")
- Real universe is messy: clusters highly elongated, not in equilibrium, merging, etc.
- Also, intervening material (WHIM/filaments) may play an important role

Constructing a light cone

- Start with Enzo simulations: 512 Mpc/h, 512³ root grid, 7 levels of AMR (8 kpc resolution), N-body + hydro
- Output simulation at appropriate intervals (dz ~ 0.5 box width)
- Rotate, shift, stack images (shift+rotate to avoid stacking same clusters on top of each other) to make 10x10 degree light cone
- Degrade images to appropriate resolution, add noise, instrumental effects, etc.

Confusion from overlapping clusters

Non-cluster contribution to integrated SZ flux

"no cl" = Flux left over after all halos >5e13 Msun removed

Note: much greater contribution when halos below obs'n cutoff threshold counted (~50%)

Flux contribution by gas temperature

Integrated Y value for simulated clusters

Clusters as extracted from light cone

Mean contribution to cluster Y from groups/filaments

Conclusions

- Inclusion of hydrodynamics (and most likely other baryonic physics) critical for getting "right" answer in estimation of errors in SZ observations
- Some confusion is unavoidable, given SZ telescope beam sizes
- Non-negligible boost in signal from WHIM (filaments/groups), particularly at low halo galaxy cluster mass